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ABSTRACT 
 

In this paper we will find the relation for curvature tensor of Rund Like Recurrent Connection. 
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1. INTRODUCTION 

 

Let Mn be an n-dimensional differentiable Manifold. (Mn, 𝑎𝑖𝑗  (x)) be Riemannian Space equipped with 

fundamentals metric tensor. From a Physical view poin S. Ikeda. Introduced line element space of Mn with a 

metric tensor 𝑔𝑖𝑗(𝑥, 𝑦) = 𝑒2𝜌 𝑎𝑖𝑗  (x), (ρ = ρ (y),  𝑦𝑖 = 𝑑𝑥𝑖 ) It is  however easily that this form of 𝑔𝑖𝑗(𝑥, 𝑦) 

depends on a Particular choice of Co-ordinate (𝑥𝑖). The theories of connection on Finsler Space have been 

studied by many author from their own stand point, A well known connection are the Berwald Connection the 

Cartan Connections, Rund Connection, in all these connections the defluxion tensor and torsion tensor vanish. 

Prasad etal [1], [2], [3] have introduced a Finsler Connection with respect to which metric tensor is h-recurrent 

or v-recurrent. 

(1.1) 𝑔
𝑖𝑗 𝑘

 = 𝑎𝑘𝑔𝑖𝑗   (h-recurrent) 

(1.2) 𝑔𝑖𝑗 𝑘 = 𝑏𝑘𝑔𝑖𝑗     (𝑣 -recurrent) 

Several curvature tensor have been defined and studied in Finsler Space with help of different Finsler 

connections. The Rund’s Curvature tensor is 𝐾𝑗ℎ𝑘
𝑖   defined. 

(1.3) 𝐾𝑗ℎ𝑘
𝑖  = 𝜃 (ℎ, 𝑘) (

𝛿┌𝑗ℎ
∗𝑖

𝛿𝑥𝑘
+ ┌𝑗ℎ

∗𝑚   ┌𝑚𝑘
∗𝑖 )   

Where 𝜃 (ℎ, 𝑘) throughout denote the interchange of indices h, k and subtraction. In this paper we will study 

Rund like Recurrent Finsler connection and their curvature tensor. 

2. RUND LIKE RECURRENT CONNECTION :-   

From the Cartan like recurrent Connection 𝑅𝑅Γ = (𝐹𝑗𝑘
𝑖 , 𝑁𝑘

𝑖 , 𝐶𝑗𝑘
𝑖 ) we drive a Rund like recurrent Connection. 

     𝑅𝑅Γ = (𝐹̇𝑗𝑘
𝑖  =  𝐹𝑗𝑘,

𝑖  𝑁̇𝑘
𝑖 , = 𝑁𝑘

𝑖  𝐶̇𝑗𝑘
𝑖 = 0) by c-Process. 

The hand 𝑣 covariant derivatives with respect to 𝑅𝑅Γ will be denoted by (I) and (II) respectively. Ricci 

identities with respect to 𝑅𝑅Γ  written as - 

(2.1) (a)  𝑥
 𝑗  𝑘

ℎ − 𝑥
 𝑘 𝑗

𝑖  =  𝑥 
𝑟 𝑅̇𝑟𝑗𝑘

ℎ −  𝑥
  𝑟

ℎ  𝑅̇𝑗𝑘
𝑟  

            (b) 𝑥
  𝑗  𝑘

ℎ − 𝑥
  𝑘  𝑗

ℎ = 𝑥 
𝑟 𝑃̇𝑟𝑗𝑘

ℎ  −  𝑥
  𝑟

ℎ  𝑃̇𝑗𝑘
𝑟   

             (c) 𝑥
  𝑗  𝑘

ℎ − 𝑥
  𝑘  𝑗

ℎ = 0  
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Similar to case of 𝑅𝐶Γ Ricci identities with respect to 𝑅𝑅Γ given by – 

PROPOSITION 2 :- 

(2.2) (a) 𝑅̇𝑜𝑗𝑘
𝑖 = (1 −

1

2
 𝑏𝑜) 𝑅̇𝑗𝑘

𝑖  

            (b) 𝑃̇𝑗𝑘
𝑖 = (1 −

1

2
 𝑏𝑜) 𝑃̇𝑗𝑘

𝑖  

            (c) 𝑅̇𝑖𝑗ℎ𝑘
 + 𝑅̇𝑗𝑖ℎ𝑘

 = 𝑔𝑖𝑗[ (𝑎
𝑘  ℎ

− 𝑎
ℎ  𝑘
) −  2𝜌

  
 
𝑟

  𝑃̇ℎ𝑘
𝑟 ]    

            (d) 𝑃̇𝑖𝑗ℎ𝑘
 + 𝑃̇𝑗𝑖ℎ𝑘

 = 𝑔𝑖𝑗  [(−𝑎ℎ  𝑘
− 𝑏

𝑘    ℎ
) −  2𝜌

  𝑟
  𝑃ℎ𝑘

𝑟 ] 

3. CURVATURE TENSORS :-  

We continue to consider generalized metric space 𝑀𝑛̅̅ ̅̅  with a conformably Riemannian metric. In this 

section we will find the expression of curvature tensors 𝑃̇𝑖𝑗ℎ𝑘
ℎ , 𝑅̇𝑖𝑗𝑘

ℎ  of 𝑅𝑅Γ under assumption n ≥3 

We deal with the Rund like recurrent connection 

𝑅𝑅Γ(𝑃̇𝑗𝑘
𝑖  = 𝑃𝑗𝑘

𝑖 , 𝑁̇𝑘
𝑖  = 𝑁𝐾

𝐼 , 𝑐̇𝑗𝑘
𝑖  = 0) Differentiating 

   (3.1)  (a) ┌𝑖𝑘
ℎ   +  𝛿𝑖

ℎ  𝜌𝑖𝑘
   +  𝛿𝑘

ℎ   𝜌
 𝑙

  -  𝑔𝑖𝑘
  𝜌

 

ℎ - 𝐹𝑖𝑘
ℎ   = 

1

2
 (𝑎𝑘

   𝛿𝑖
ℎ  +  𝑎𝑖

    𝛿𝑘
ℎ  −  𝑎 

ℎ   𝑔𝑘𝑖
 ) 

by 𝑦 
𝑙 and paying attention to  

(𝑔𝑖𝑘
  𝑔 

ℎ𝑟)
  𝑙

    = (𝑎𝑖𝑘
  𝑎 

ℎ𝑟)
  𝑙

  = 0 we get 

       (3.2) 𝑃̇𝑖𝑘𝑙
ℎ   = (𝜕̇𝑙

  𝐹𝑖𝑘
ℎ )   = (𝜌

  𝑘  𝑙

 − 
1

2
 𝑎
𝑘  𝑙

 ) 𝛿𝑖
ℎ 

             + (𝜌
 𝑖  𝑙

 − 
1

2
 𝑎
𝑖  𝑙

 ) 𝛿𝑘
ℎ - 𝑔𝑖𝑘

   𝑔 
ℎ𝑟  (𝜌

 𝑟  𝑙

 − 
1

2
 𝑎
𝑟  𝑙

 )  

Which gives after contraction with hand K 

      (3.3) 𝑃̇𝑖𝑙
   = 𝑃̇𝑖ℎ𝑙

ℎ  = (𝜌
 𝑟  𝑙

 − 
1

2
 𝑎𝑖𝑙
 ) 𝑛 

So equation (3.2) becomes –  

     (3.4) 𝑃̇𝑖𝑘𝑙
ℎ  - (𝛿𝑖

ℎ𝑃̇𝑘𝑙
  + 𝛿𝑘

ℎ 𝑃̇𝑖𝑙
  - 𝑔𝑖𝑘

  𝑔 
ℎ𝑟 𝑃̇𝑟𝑙

 )/n = 0 

 

In order to consider h-curvature tensor 𝑅̇𝑖𝑘𝑙
ℎ  of 𝑅𝑅Γ we shall find relation between tensor 𝑅𝑖𝑘𝑙

ℎ⏞
(𝑟)

  and 𝑅̇𝑖𝑘𝑙
ℎ . 

Now differentiating (3.1) with respect to 𝑥 
𝑙 we get 

              (3.5) 𝜕𝑙
  ┌𝑖𝑘

ℎ⏞
(𝑟)

  = 𝛿𝑙
   𝐹𝑖𝑘

ℎ  - 𝛿𝑖
ℎ (𝐴

𝑘 𝑙

  + 𝐴𝑟
  𝐹𝑘𝑙

𝑟 ) - 𝛿𝑘
ℎ (𝐴

𝑖 𝑙

  + 𝐴𝑟
  𝐹𝑖𝑙

𝑟)  

   +  𝑔𝑖𝑘
 (𝐴

 𝑙

ℎ  - 𝐴 
𝑟 𝐹𝑟𝑙

ℎ ) + 𝐴 
ℎ(𝑎𝑙

  𝑔𝑖𝑘
  + 𝐹𝑖𝑘𝑙

 + 𝐹𝑖𝑙𝑘
 ) = 0 

Where 𝐴𝑘
  = 

1

2
 𝑎𝑘
 − 𝜌

 𝑘

  

 (3.6) 𝜕𝑙
  ┌𝑖𝑘

ℎ⏞
(𝑟)

  - 𝛿𝑘
  ┌𝑖𝑙

ℎ⏞
(𝑟)

  = (𝛿𝑙
  𝐹𝑖𝑘

ℎ  - 𝛿𝑘
  𝐹𝑖𝑙

ℎ) + 𝛿𝑖
ℎ (𝐴

 𝑙

  - 𝐴
𝑙 𝑘

 )  

    + 𝛿𝑘
ℎ 𝐴

 𝑙

 - 𝛿𝑒
ℎ (𝐴

𝑖 𝑘

  - 𝐴𝑟
   𝐹𝑖𝑘

𝑟  )- 𝑔𝑖𝑘
  (𝐴

 𝑙

ℎ  -𝐴𝑟
   𝐹𝑟𝑙

ℎ  )  

                         + 𝑔𝑖𝑙
  (𝐴

𝑖 𝑘

ℎ  - 𝐴 
𝑟   𝐹𝑟𝑘

ℎ  )- 𝐴 
ℎ (𝑎𝑙

  𝑔𝑖𝑘
  - 𝑎𝑘

  𝑔𝑖𝑙
  )  

on other hand (3.1) gives 

 (3.7) 𝜃(𝑘𝑙)
  =  ┌𝑖𝑘

 𝑠⏞
(𝑟)

 ┌𝑎𝑙
ℎ⏞
(𝑟)

 = 𝜃(𝑘𝑙)
  [𝐹𝑖𝑘

𝑆  𝐹𝑎𝑙
ℎ  - 𝛿𝑘

ℎ (𝐴𝑖
    𝐴𝑙

  +  𝐹𝑖𝑙
𝑆 𝐴𝑆

 ) 

        - 𝑔𝑖𝑘
  𝐴 

𝑎 (𝐴𝑆
  𝛿𝑙

ℎ + 𝐹𝑆𝑙
ℎ) 

          + 𝐴 
ℎ ( 𝐴𝑙

  𝑔𝑖𝑘
  + 𝐹𝑖𝑘𝑙

 ) ] 
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  Where 𝜃(𝑘𝑙)
  denotes Subtraction after interchanging the indices 

 (3.8) 𝑅⏞𝑖𝑘
ℎ

(𝑟)

 

 

  = 𝑅̇𝑖𝑘𝑙
ℎ  + 𝛿𝑖

ℎ(𝐴
𝑘 𝑙

  - 𝐴
𝑙 𝑘

 ) + 𝛿𝑘
ℎ (𝐴

𝑖 𝑙

  - 𝐴𝑖
  𝐴𝑙

 − 𝐴𝑠
  𝐹𝑖𝑙

𝑆 )  

                    - 𝛿𝑖
ℎ   (  𝐴

𝑖 𝑘

 + 𝐴𝑟
  𝐹𝑖𝑘

𝑟 − 𝐴𝑖
  𝐴𝑘

 − 𝐴𝑆
  𝐹𝑖𝑘

𝑆 ) - 𝑔𝑖𝑘
  (𝐴

 𝑙

ℎ  - 𝐴 
𝑟 𝐹𝑟𝑙

ℎ  + 𝐴 
𝑆 𝐴𝑆

  𝛿𝑙
ℎ 

                + 𝐹𝑆𝑙
ℎ   𝐴 

𝑆 + ( 𝑎𝑙
 -  𝐴𝑙

 ) 𝐴 
ℎ) 

 Now contracting (3.8) by 𝛿ℎ
𝑙  we get 

(3.9) (a) 𝑅⏞
(𝑟)

𝑖𝑘

 

 = 𝑅̇𝑖𝑘
   + 𝐴

𝑘 𝑖

 - 𝐴𝑖
  𝐴𝑘

  - 𝐴𝑆
  𝐹𝑖𝑘

𝑆  - n (𝐴
 𝑘

 + 𝐴𝑟
   𝐹𝑖𝑘

𝑟  - 𝐴𝑖
  𝐴𝑘

 − 𝐴𝑆
  𝐹𝑖𝑘

𝑆 ) 

  - 𝑔𝑖𝑘
  (𝐴

 ℎ

ℎ - 𝐴 
𝑟 𝐹𝑟ℎ

ℎ  + 𝑛𝐴 
𝑆 𝐴𝑆

  + 𝐹𝑠ℎ
ℎ  𝐴 

𝑆 + ( 𝑎𝑙
 -  𝐴𝑙

 ) 𝐴 
𝑙) 

  + 𝑔𝑖ℎ
  (𝐴

 𝑘

ℎ - 𝐴 
𝑟 𝐹𝑟𝑘

ℎ  + 𝐴 
𝑆 𝐴𝑆

  + 𝛿𝑘
ℎ  + 𝐹𝑆𝑘

ℎ  𝐴 
𝑆 + ( 𝑎𝑘

 -  𝐴𝑘
 ) 𝐴 

ℎ). 

Theorem 1 : 

Let 𝑀̅ 
𝑛 = (𝑀 

𝑛, 𝑔𝑖𝑗
 = 𝑒 

2𝜌(𝑥,𝑦) 𝑎𝑖𝑗(𝑥)
 ) 𝑛 ≥ 3 be generalized metric space with conformally Riemannian 

Metric. The two curvature tensors 𝜌̇𝑖𝑗𝑘
ℎ  and 𝑅̇𝑖𝑗𝑘

ℎ  of 𝑅𝑅Γ satisfy equation (3.4) and (3.8) respectively. 

Conclusion : 

  In this paper main result is proposition 2 and Theorem 1. 
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