Rund Like Recurrent Connection

Prakash Chandra Srivastava

Department of Mathematics, S.D.J.P.G. College, Chandeshwar, Azamgarh, India

Abstract

In this paper we will find the relation for curvature tensor of Rund Like Recurrent Connection.

Keywords: Rund like Recurrent Connection, Curvature tensor.

1. INTRODUCTION

Let M^{n} be an n -dimensional differentiable Manifold. ($\mathrm{M}^{\mathrm{n}}, a_{i j}(\mathrm{x})$) be Riemannian Space equipped with fundamentals metric tensor. From a Physical view poin S. Ikeda. Introduced line element space of M^{n} with a metric tensor $g_{i j}(x, y)=e^{2 \rho} a_{i j}(\mathrm{x}),\left(\rho=\rho(\mathrm{y}), y^{i}=d x^{i}\right)$ It is however easily that this form of $g_{i j}(x, y)$ depends on a Particular choice of Co-ordinate (x^{i}). The theories of connection on Finsler Space have been studied by many author from their own stand point, A well known connection are the Berwald Connection the Cartan Connections, Rund Connection, in all these connections the defluxion tensor and torsion tensor vanish. Prasad etal [1], [2], [3] have introduced a Finsler Connection with respect to which metric tensor is h-recurrent or v-recurrent.
(1.1) $g_{\left.i j\right|_{k}}=a_{k} g_{i j} \quad$ (h-recurrent)
(1.2) $\quad g_{i j k}=b_{k} g_{i j} \quad(v$-recurrent)

Several curvature tensor have been defined and studied in Finsler Space with help of different Finsler connections. The Rund's Curvature tensor is $K_{j h k}^{i}$ defined.

$$
\begin{equation*}
K_{j h k}^{i}=\theta(h, k)\left(\frac{\delta \Gamma_{j h}^{* i}}{\delta x^{k}}+\Gamma_{j h}^{* m} \Gamma_{m k}^{* i}\right) \tag{1.3}
\end{equation*}
$$

Where $\theta(h, k)$ throughout denote the interchange of indices h, k and subtraction. In this paper we will study Rund like Recurrent Finsler connection and their curvature tensor.

2. RUND LIKE RECURRENT CONNECTION :-

From the Cartan like recurrent Connection $R R \Gamma=\left(F_{j k}^{i}, N_{k}^{i}, C_{j k}^{i}\right)$ we drive a Rund like recurrent Connection. $R R \Gamma=\left(\dot{F}_{j k}^{i}=F_{j k}^{i} \dot{N}_{k}^{i}=N_{k}^{i} \dot{C}_{j k}^{i}=0\right)$ by c-Process.
The hand v covariant derivatives with respect to $R R \Gamma$ will be denoted by (I) and (II) respectively. Ricci identities with respect to $R R \Gamma$ written as -
(a) $x_{\left.\left.\right|_{j}\right|_{\left.\right|_{k}}}-x_{\left.\left.\right|_{k}\right|_{j}}^{i}=x^{r} \dot{R}_{r j k}^{h}-x_{| |_{r}}^{h} \dot{R}_{j k}^{r}$
(b) $x_{\left|\left.\right|_{j}\right|_{k}}-x_{\left\|_{k}\right\|_{j}}^{h}=x^{r} \dot{P}_{r j k}^{h}-x_{\left.\right|_{\mid}}^{h} \dot{P}_{j k}^{r}$
(c) $x_{\left.\left|\left.\right|_{j}\right|\right|_{k}}^{h}-x_{\left|\left.\right|_{k}\right|_{j}}^{h}=0$

Similar to case of $R C \Gamma$ Ricci identities with respect to $R R \Gamma$ given by -

PROPOSITION 2 :-

(a) $\dot{R}_{o j k}^{i}=\left(1-\frac{1}{2} b o\right) \dot{R}_{j k}^{i}$
(b) $\dot{P}_{j k}^{i}=\left(1-\frac{1}{2} b o\right) \dot{P}_{j k}^{i}$
(c) $\dot{R}_{i j h k}+\dot{R}_{j i h k}=g_{i j}\left[\left(a_{k h_{h}}-a_{h k}\right)-\left.2 \rho\right|_{r} \dot{P}_{h k}^{r}\right]$
(d) $\dot{P}_{i j h k}+\dot{P}_{j i h k}=g_{i j}\left[\left(-\left.a_{h}\right|_{k}-\left.b_{k}\right|_{h}\right)-2 \rho_{| |_{r}} P_{h k}^{r}\right]$

3. CURVATURE TENSORS :-

We continue to consider generalized metric space $\overline{M^{n}}$ with a conformably Riemannian metric. In this section we will find the expression of curvature tensors $\dot{P}_{i j h k}^{h}, \dot{R}_{i j k}^{h}$ of $R R \Gamma$ under assumption $\mathrm{n} \geq 3$

We deal with the Rund like recurrent connection
$R R \Gamma\left(\dot{P}_{j k}^{i}=P_{j k}^{i}, \dot{N}_{k}^{i}=N_{K}^{I}, \dot{C}_{j k}^{i}=0\right)$ Differentiating

$$
\begin{equation*}
\text { (a) } \Gamma_{i k}^{h}+\delta_{i}^{h} \rho_{i k}+\delta_{k}^{h} \rho_{\left.\right|_{l}}-g_{i k} \rho_{\mid}^{h}-F_{i k}^{h}=\frac{1}{2}\left(a_{k} \delta_{i}^{h}+a_{i} \delta_{k}^{h}-a^{h} g_{k i}\right) \tag{3.1}
\end{equation*}
$$

by y^{l} and paying attention to
$\left(g_{i k} g^{h r}\right)\left\|_{l}=\left(a_{i k} a^{h r}\right)\right\|_{l}=0$ we get
(3.2) $\dot{P}_{i k l}^{h}=\left(\dot{\partial}_{l} F_{i k}^{h}\right)=\left(\rho_{\left.\left.\right|_{k}\right|_{l}}-\frac{1}{2} a_{k} \|_{l}\right) \delta_{i}^{h}$

$$
+\left(\rho_{\left.\right|_{i} \|_{l}}-\frac{1}{2} a_{i \|_{l}}\right) \delta_{k}^{h}-g_{i k} g^{h r}\left(\rho_{|r| \|_{l}}-\frac{1}{2} a_{r \mid \|_{l}}\right)
$$

Which gives after contraction with hand K

$$
\text { (3.3) } \dot{P}_{i l}=\dot{P}_{i n l}^{h}=\left(\left.\rho\right|_{r} \|_{l}-\frac{1}{2} a_{i l}\right) n
$$

So equation (3.2) becomes -
(3.4) $\dot{P}_{i k l}^{h}-\left(\delta_{i}^{h} \dot{P}_{k l}+\delta_{k}^{h} \dot{P}_{i l}-g_{i k} g^{h r} \dot{P}_{r l}\right) / \mathrm{n}=0$

In order to consider h-curvature tensor $\dot{R}_{i k l}^{h}$ of $R R \Gamma$ we shall find relation between tensor $\overbrace{R_{i k l}^{h}}^{(r)}$ and $\dot{R}_{i k l}^{h}$. Now differentiating (3.1) with respect to x^{l} we get

$$
\text { (3.5) } \partial_{l} \overbrace{\Gamma_{i k}^{h}}^{(r)}=\delta_{l} F_{i k}^{h}-\delta_{i}^{h}\left(\left.A_{k}\right|_{l}+A_{r} F_{k l}^{r}\right)-\delta_{k}^{h}\left(A_{\left.i\right|_{l}}+A_{r} F_{i l}^{r}\right)
$$

$$
+g_{i k}\left(A_{\left.\right|_{l}}^{h}-A^{r} F_{r l}^{h}\right)+A^{h}\left(a_{l} g_{i k}+F_{i k l}+F_{i l k}\right)=0
$$

Where $A_{k}=\frac{1}{2} a_{k}-\rho_{\left.\right|_{k}}$

$$
\text { (3.6) } \begin{aligned}
\partial_{l} \overbrace{i k}^{(r)} & \delta_{i k}^{(\overbrace{\Gamma_{i l}}^{n}}= \\
\left(\delta_{l} F_{i k}^{h}\right. & \left.-\delta_{k} F_{i l}^{h}\right)+\delta_{i}^{h}\left(A_{\left.\right|_{l}}-A_{l \mid}\right) \\
& +\delta_{k}^{h} A_{\left.\right|_{l}}-\delta_{e}^{h}\left(A_{\left.i\right|_{k}}-A_{r} F_{i k}^{r}\right)-g_{i k}\left(A_{\left.\right|_{l} ^{h}}-A_{r} F_{r l}^{h}\right) \\
& +g_{i l}\left(A_{\left.i\right|_{k} h}-A^{r} F_{r k}^{h}\right)-A^{h}\left(a_{l} g_{i k}-a_{k} g_{i l}\right)
\end{aligned}
$$

on other hand (3.1. .

$$
\begin{aligned}
&(3.7) \theta_{(k l)}=\stackrel{(r)}{\stackrel{(r)}{\Gamma_{i k}^{s}} \stackrel{(r)}{\Gamma_{a l}^{n}}=\theta_{(k l)}}\left[F_{i k}^{S} F_{a l}^{h}-\delta_{k}^{h}\left(A_{i} A_{l}+F_{i l}^{S} A_{S}\right)\right. \\
&-g_{i k} A^{a}\left(A_{S} \delta_{l}^{h}+F_{s l}^{h}\right) \\
&\left.+A^{h}\left(A_{l} g_{i k}+F_{i k l}\right)\right]
\end{aligned}
$$

Where $\theta_{(k l)}$ denotes Subtraction after interchanging the indices
(r)
(3.8) $\tilde{R}_{i k}^{h}=\dot{R}_{i k l}^{h}+\delta_{i}^{h}\left(\left.A_{k}\right|_{l}-\left.A_{l}\right|_{k}\right)+\delta_{k}^{h}\left(A_{\left.i\right|_{l}}-A_{i} A_{l}-A_{s} F_{i l}^{S}\right)$

$$
\begin{aligned}
& -\delta_{i}^{h}\left(A_{\left.i\right|_{k}}+A_{r} F_{i k}^{r}-A_{i} A_{k}-A_{S} F_{i k}^{S}\right)-g_{i k}\left(A_{\left.\right|_{l} ^{h}}-A^{r} F_{r l}^{h}+A^{S} A_{S} \delta_{l}^{h}\right. \\
& \left.\quad+F_{S l}^{h} A^{S}+\left(a_{l^{-}} A_{l}\right) A^{h}\right)
\end{aligned}
$$

Now contracting (3.8) by δ_{h}^{l} we get
(r)
(3.9) (a) $\stackrel{\overbrace{}}{R}_{i k}=\dot{R}_{i k}+\left.A_{k}\right|_{i}-A_{i} A_{k}-A_{S} F_{i k}^{S}-\mathrm{n}\left(A_{\left.\right|_{k}}+A_{r} F_{i k}^{r}-A_{i} A_{k}-A_{S} F_{i k}^{S}\right)$

$$
\begin{aligned}
& -g_{i k}\left(A_{\left.\right|_{h} ^{h}}^{h}-A^{r} F_{r h}^{h}+n A^{S} A_{S}+F_{s h}^{h} A^{S}+\left(a_{l^{-}} A_{l}\right) A^{l}\right) \\
& +g_{i h}\left(A_{\left.\right|_{k}}^{h}-A^{r} F_{r k}^{h}+A^{S} A_{S}+\delta_{k}^{h}+F_{S k}^{h} A^{S}+\left(a_{k^{-}} A_{k}\right) A^{h}\right)
\end{aligned}
$$

Theorem 1:

Let $\bar{M}^{n}=\left(M^{n}, g_{i j}=e^{2 \rho(x, y)} a_{i j(x)}\right) n \geq 3$ be generalized metric space with conformally Riemannian Metric. The two curvature tensors $\dot{\rho}_{i j k}^{h}$ and $\dot{R}_{i j k}^{h}$ of $R R \Gamma$ satisfy equation (3.4) and (3.8) respectively.

Conclusion :

In this paper main result is proposition 2 and Theorem 1.

REFERENCES

[1] Ikeda S. : A Structural consideration on the Brans Dicke Scalar $\varphi(\mathrm{x})$ (Progr. Theo. Phys.) 66 (1981), 2284-2286.
[2] Matsumoto M : Foundation of Finsler Geometry and Special Finsler Space (Kaiseisha Press Saikawa, Japan 1986).
[3] Numata S. : Generalized Metric Spaces with Conformally Riemannian Metric (J.Tensor Soc. India 1 (1983) no. 1, 19-37)
[4] Prasad B.N., Shukla H.S. : On recurrent Finsler Connection with defluxion and torsion and Singh D.D.
[5] Prasad B.N., Shukla H.S. : On conformal transformation of h-recurrent wagner Spaces. and Singh D.D. (Indian J. Pure appl. Maths.) 18 (10) (1987) 913-921.
[6] Prasad B.N. and Srivastava : On generalized h-recurrent Finsler Connection (Indian J. Lalji Pureappl. Maths.) 21(7) (1990) 653-660.

